Приложение 1 к Методике прогнозирования масштабов заражения аварийно химически опасными веществами при авариях (разрушениях) на химически опасных объектах и транспорте (раздел II)

РАСЧЕТНЫЕ ТАБЛИЦЫ

Таблица П1

ГЛУБИНЫ ЗОН ВОЗМОЖНОГО ЗАРАЖЕНИЯ АХОВ, км

Скорость		Эквивалентное количество АХОВ														
ветра, м/с	0,01	0,05	0,1	0,5	1	3	5	10	20	30	50	70	100	300	500	1000
1	0,38	0,85	1,25	3,16	4,75	9,18	12,53	19,20	29,56	38,13	52,67	65,23	81,91	166	231	363
2	0,26	0,59	0,84	1,92	2,84	5,35	7,20	10,83	16,44	21,02	28,73	35,35	44,09	87,79	121	189
3	0,22	0,48	0,68	1,53	2,17	3,99	5,34	7,96	11,94	15,18	20,59	25,21	31,30	61,47	84,50	130
4	0,19	0,42	0,59	1,33	1,88	3,28	4,36	6,46	9,62	12,18	16,43	20,05	24,80	48,18	65,92	101
5	0,17	0,38	0,53	1,19	1,68	2,91	3,75	5,53	8,19	10,33	13,88	16,89	20,82	40,11	54,67	83,60
6	0,15	0,34	0,48	1,09	1,53	2,66	3,43	4,88	7,20	9,06	12,14	14,79	18,13	34,67	47,09	71,70
7	0,14	0,32	0,45	1,00	1,42	2,46	3,17	4,49	6,48	8,14	10,87	13,17	16,17	30,73	41,63	63,16
8	0,13	0,30	0,42	0,94	1,33	2,30	2,97	4,20	5,92	7,42	9,90	11,98	14,68	27,75	37,49	56,70
9	0,12	0,28	0,40	0,88	1,25	2,17	2,80	3,96	5,60	6,86	9,12	11,03	13,50	25,39	34,24	51,60
10	0,12	0,26	0,38	0,84	1,19	2,06	2,66	3,76	5,31	6,50	8,50	10,23	12,54	23,49	31,61	47,53
11	0,11	0,25	0,36	0,80	1,13	1,96	2,53	3,58	5,06	6,20	8,01	9,61	11,74	21,91	29,44	44,15
12	0,11	0,24	0,34	0,76	1,08	1,88	2,42	3,43	4,85	5,94	7,67	9,07	11,06	20,58	27,61	41,30
13	0,10	0,23	0,33	0,74	1,04	1,80	2,37	3,29	4,66	5,70	7,37	8,72	10,48	19,45	26,04	38,90
14	0,10	0,22	0,32	0,71	1,00	1,74	2,24	3,17	4,49	5,50	7,10	8,40	10,04	18,46	24,69	36,81
15	0,10	0,22	0,31	0,69	0,97	1,68	2,17	3,07	4,34	5,31	6,86	8,11	9,70	17,60	23,50	34,98

Примечания. 1. При скорости ветра > 15 м/с размеры зон заражения принимать как при скорости ветра 15 м/с.

2. При скорости ветра < 1 м/с размеры зон заражения принимать как при скорости ветра 1 м/с.

Таблица П2

ХАРАКТЕРИСТИКИ AXOB И ВСПОМОГАТЕЛЬНЫЕ КОЭФФИЦИЕНТЫ ДЛЯ ОПРЕДЕЛЕНИЯ ГЛУБИН 3ОН ЗАРАЖЕНИЯ

№ Наименование		Плотность АХОВ,		Температура	Пороговая	Значения вспомогательных коэффициентов							
п/п			куб. м	кипения,	токсодоза,	K1 K2		КЗ	К7				
				град. С	мг. мин./л				для	для	для	для	для
		газ	жидкость						-40 °C	-20 °C	°C	20 °C	40 °C
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Акролеин	-	0,839	52,7	0,2*	0	0,013	0,75	0,1	0,2	0,4	1	2,2
2	Аммиак: хранение под дав-								0	0,3	0,6	1	1,4
	лением	0,0008	0,681	-33,42	15	0,18	0,025	0,04	0,9	1	1	1	1
	изотермическое	_	0,681	-33,42	15	0,01	0,025	0,04	0	1	1	1	1
3	хранение Ацетонитрил	-	0,786	81,6	21.6**	0	0.004	0,028	0,9	0,1	0,3	1	2,6
4	Ацетонциангидрин	-	0,932	120	1,9**	0	0,002	0,316	0,02	0	0,3	1	1,5
5	Водород мышьяковистый	0,0035	1,64	-62,47	0,2**	0,17	0,054	0,857	0,3	0,5	0,8	1	1,2
6	Водород фтористый	-	0,989	19,52	4	0	0,028	0,15	0,1	0,2	0,5	1	1
7	Водород хлористый	0,0016	1,191	-85,10	2	0,28	0,037	0,30	0,64	0,6	0,8	1	1,2
8	Водород бромистый	0,0036	1,490	-66,77	2,4*	0,13	0,055	6,0	0,2	0,5	0,8	1	1,2
9	Водород цианистый	-	0,687	25,7	0,2	0	0,026	3,0	0	0	0,4	1	1,3
10	Диметиламин	0,0020	0,680	6,9	1,2*	0,06	0,041	0,5	0,1	0,3	0,8	1	2,5
11	Метиламин	0,0014	0,699	-6,5	1,2*	0,13	0,034	0,5	0,3	0,7	0,5	1 1	2,5
12	Метил бромистый	-	1,732	3,6	1,2*	0,04	0,039	0,5	0,2	0,4	0,9	1	2,3
13	Метил хлористый	0,0023	0,983	-23,76	10,8**	0,125	0,044	0,056	0,5	0,1	0,6	1	1,5
14	Метилакрилат	-	0,953	80,2	6*	0	0,005	0,025	0,1	0,2	0,4	1	3,1
15	Метилмеркаптан	-	0,867	5,95	1,7**	0,06	0,043	0,353	0,1	0,3	0,8	1	2,4
16	Нитрил акриловой кислоты	-	0,806	77,3	0,75	0	0,007	0,80	0,04	0,1	0,4	1	2,4
17	Окислы азота	-	1,491	21,0	1,5	0	0,040	0,40	0	0	0,4	1	1
18	Окись этилена	-	0,882	10,7	2,2**	0,05	0,041	0,27	0,1	0,3	0,7	1	3,2
19	Сернистый ангидрид	0,0029	1,462	-10,1	1,8	0,11	0,049	0,333	0,2	0,5	0,3	1 1	1,7 1
20	Сероводород	0,0015	0,964	-60,35	16,1	0,27	0,042	0,036	0,3 1	0,5	0,8	1	1,2
21	Сероуглерод	-	1,263	46,2	45	0	0,021	0,013	0,1	0,2	0,4	1	2,1
22	Соляная кислота (концентрированная)	-	1,198	-	2	0	0,021	0,30	0	0,1	0,3	1	1,6
23	Триметиламин	-	0,671	2,9	6*	0,07	0,047	0,1	0,1	0,4	0,9	1	2,2
24	Формальдегид	-	0,815	-19,0	0,6*	0,19	0,034	1,0	0,4	1	0,5	1	1,5
25	Фосген	0,0035	1,432	8,2	0,6	0,05	0,061	1,0	0,1	0,3	0,7	1	2,7
26	Фтор	0,0017	1,512	-188,2	0,2*	0,95	0,038	3,0	0,7 1	0,8	0,9	1 1	1,1
27	Фосфор трёххлористый	-	1,570	75,3	3	0	0,010	0,2	0,1	0,2	0,4	1	2,3
28	Фосфора хлорокись	-	1,675	107,2	0,06*	0	0,003	10,0	0,05	0,1	0,3	1	2,6 1,4
	Хлор	0,0032	1,553	-34,1	0,6	0,18	0,052	1,0	0,9	1	1	1	1
30	Хлорпикрин	-	1,658	112,3	0,02	0	0,002	30,0	0,03	0,1	0,3	1	2,9
31	Хлорциан	0,0021	1,220	12,6	0,75	0,04	0,048	0,80	0	0	0,6	1	3,9
32	Этиленимин	-	0,838	55,0	4,8	0	0,009	0,125	0,05	0,1	0,4	1	2,2
33	Этиленсульфид Этилмеркаптан	-	1,005 0,839	55,0 35,0	0,1* 2,2**	0	0,013	6,0 0,27	0,05	0,1	0,4	1	2,2
r			J,037	55,0			·,·20	٠,-/	U,1	_ - ,-	٠,٥		-,,

Примечания:

- 1. Плотности газообразных AXOB в графе 3 приведены для атмосферного давления: при давлении в ёмкости, отличном от атмосферного, плотности газообразных AXOB определяются путём умножения данных графы 3 на значения давления в кгс/кв. см.
- 2. В графах 10 14 в числителе значения K_7 для первичного, в знаменателе для вторичного облака.
- 3. В графе 6 численные значения токсодоз, помеченные звёздочками, определены ориентировочно расчётом по соотношению:

где:

 Π – токсодоза, мг. мин./л;

ПДКр.з. – ПДК рабочей зоны по ГОСТ 12.1.005-88, мг/л;

 $\mathbf{K} = 5$ — для раздражающих ядов (помечены одной звёздочкой);

K = 9 — для всех прочих ядов (помечены двумя звёздочками).

4. Значение K_1 для изотермического хранения аммиака приведено для случая разливов (выбросов) в поддон.

Таблица П3

ЗНАЧЕНИЕ КОЭФФИЦИЕНТА K₄ В ЗАВИСИМОСТИ ОТ СКОРОСТИ ВЕТРА

Скорость ветра, м/с	1	2	3	4	5	6	7	8	9	10	15
K_4	1	1,33	1,67	2,0	2,34	2,67	3,0	3,34	3,67	4,0	5,68

Таблица П4

ВОЗМОЖНЫЕ ПОТЕРИ РАБОЧИХ, СЛУЖАЩИХ И НАСЕЛЕНИЯ ОТ AXOB В ОЧАГЕ ПОРАЖЕНИЯ, %

Условия	Без	Обеспеченность людей противогазами								
нахождения людей	проти-	20	30	40	50	60	70	80	90	100
	вогазов									
1	2	3	4	5	6	7	8	9	10	11
На открытой ме- стности	90 – 100	75	65	58	50	40	35	25	18	10
В простейших укрытиях, зданиях	50	40	35	30	27	22	18	14	9	4

Примечание. Ориентировочная структура потерь людей в очаге поражения составит: лёгкой степени – 25%, средней и тяжёлой степени (с выходом из строя не менее чем на 2-3 недели и нуждающихся в госпитализации) – 40%, со смертельным исходом – 35%.