Приложение 10

к Временному Порядку организации и проведения государственного контроля за соблюдением требований природоохранного законодательства (государственного экологического контроля) $(\pi.4.13.)$

Приложение _	_ к Акту от0	ора проб от	<u>No</u>

iipotokosi namepenin	in napame	TPOD TUSOTIDISTEDOTO II	orona	
Дата проведения измерений		·		
Время проведения измерений: начало	час.	мин., окончание	час	МИН
Измерения выполнены в соответствии с 1	ΓΟCT 17.2.4	.06-90 та 17.2.4.07-90.		
1. Номер (наименование) источника				
2. Место измерения				

2.1. До (после) вентилятора; до (после) ГОУ; Участок газохода: вертикальный, горизонтальный, наклонный.____

(подчеркнуть)

2.2. Длинна прямого участка l, мм

2.3. Измерительное сечение	
Круглое сечение	Прямоугольное сечение
Диаметр D , мм	Размер сторон А и В, мм
,,,	A =
	$B/A = \underline{\hspace{1cm}}$.
	Эквивалентный диаметр D_e , мм. $D_e = (2A \times B) / (A + B)$
	=
	= (2 × ×) / (+)
$D = \underline{\hspace{1cm}}$.	$D_{\mathbf{e}} = \underline{\hspace{1cm}}$.
Значение $L = l / D = / =$.	Значение $L = l / D_e = / =$.
Длинна участка до измерительного сечения l_{y} , мм	Длинна участка до измерительного сечения l_{y} , мм
$l_{y} = l - (K_{z} \times \overline{D})$	$l_{y} = l - (K_{z} \times D_{e})$
$l_{y} = _{}{} \times _{}) =$	$l_{y} = $
Количество точек измерения n_D , шт.	Количество точек измерения n_A , n_B , шт.
n_D	n_A n_B n_B
Площадь сечения S_D , M^2 . $S_D = 0.785 (\bar{D} / 1000)^2$	Площадь сечения S_{AB} , M^2 . $S_{AB} = (A / 1000) \times (B / 1000)$
$S_D = 0.785 \times (___/1000)^2$	$S_{AB} = ($ /1000 $) \times ($ /1000 $)$
$S_D =$	$S_{AB} =$

3. Температура газопылевого потока t_r : °C: T_r : К

	Круглое сеч	нение				Прямоугольное сечение							
Координаты точки, мм $t_{ m rl}$ $t_{ m r2}$ $t_{ m r3}$ $\overline{t}_{ m r}$						Координаты точки, мм $t_{\Gamma 1}$ $t_{\Gamma 2}$ $t_{\Gamma 3}$ t_{Γ}							
т. 1	$(0,250 \pm 0,083) \ \overline{D}$					T. 1 $(0.250 \pm 0.083) A$							
						0,25 × =							
	0,25 × =					$(0,250 \pm 0,083) B$							
						0,25 × =							
т. 2	\bar{D} - (0,250 ± 0,083) \bar{D}					т. 2 $A - (0.250 \pm 0.083) A$							
						=							
	=					$B - (0.250 \pm 0.083) B$							
						=							

 $\overline{t_{\Gamma}} = \underline{\hspace{1cm}}; \quad T_{\Gamma} = (273 + \overline{t_{\Gamma}})$ $T_{\Gamma} =$

4 Атмосферное давление *п*.

т. ттыосферное давление ра, кта:			
В начале измерений	В конце измерений	_	
		p_a	=

5. СИТ. применяемые при измерениях

e. err, iipiineinienien iipii iisiiep		
Наименование СИТ	Заводской номер	Сведения о поверке

6.	6. Скорость υ и объёмный расход $q_{\scriptscriptstyle V}$														
	Координаты точки n_i , Давление полное $p_{\text{п}i}$ статическое $p_{\text{ст}i}$,			Динамическое давление $p_{{}_{\mathrm{J}i}}$, мм в					вод. ст	Скорость \mathcal{U}_i , м/с					
n_i	K_{Di} ,	при круглом	По	казан	RN		вод. ст.	n unu		n . –			n . –	1/n	$v = 4.429\sqrt{(1/0)}\sqrt{n}$
, , , ,	$\mathbf{K}D_{l}$,	$K_{Di} \times \overline{D};$		СИТ		\bar{p}	$P^{\Pi i} \left(P^{\text{CT}i} \right)$	p_{cti} при a) p_{ct} «+»:	$K_{\scriptscriptstyle \mathrm{T}}$	$K_{\scriptscriptstyle \mathrm{T}} =$		$P_{Al} - V_{Al}$		$\begin{array}{ccc} v_{i} & v_{i} = 4,429\sqrt{(1/\rho)}\sqrt{p_{\pi i}} \\ & = 4,429 \times \underline{\hspace{1cm}} \sqrt{p_{\pi i}} \\ & = \underline{\hspace{1cm}} \times \sqrt{p_{\pi i}} \end{array}$	
	Kn_{Ai}	при прямоугольно		<u> </u>				$=p_{\pi i}-p_{\pi i};$	Пока	зания	я СИТ		$p \times K_{\scriptscriptstyle \mathrm{T}}$		$=$ $\times \sqrt{p_{xi}}$
	Kn_{Bi}	м сечении:	p_1	p_2	p			6) p_{cr} «-»: = $p_{ri} + p_{ri}$	p_1	p_2	p_3	\bar{p}			
	·Di	$Kn_{Ai} \times A,$ $Kn_{Bi} \times B$			3										
1															
3															
4															
5															
6															
7 8															
9									1						
10															
11															
12															
13 14															
15															
16															
17									_						
18		_					_		1						
		p	σ _π =				$p_{\rm cr} = $	/ 13	,6 =			мм ј	от. ст.		
							<i>p</i> _a =	×7	,5 =			мм р	от. ст.		
1	$p_{\Gamma} = (p_{\rm a})$	$\pm \bar{p}_{cT}$) =							р г =	=					\overline{v} =
I	$o_{\Gamma}/T_{\Gamma} =$		_/				_		p _r /	т _г =					
П	Плотность газа ρ , кг/м ³ $\rho = 0.359 \ \rho_o \times p_r / T_r$; $\rho = 0.359 \times \times = $ кг/м ³ .														
	При $\rho_0 = 1,29$ кг/м $\rho = 0,463$ p_{Γ}/T_{Γ} ;														
								= $\sqrt{1}$ /		=					
Ö	$ ho=0.463 imes \underline{\hspace{1cm}} = \underline{\hspace{1cm}} ext{кг/м}^3 \; ; \qquad \sqrt{1/\rho} = \sqrt{1/} \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \; .$ Объёмный расход q_v та q_{vo} , \mathbf{M}^3/\mathbf{c} .														
При рабочих условиях $q_v = \overline{v} \cdot S = \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$															
Π_{J}	При нормальних условиях 0,359 $q_{\nu} \times p_{\Gamma} / T_{\Gamma} = 0,359 \times \times \times \times = q_{\nu 0} =$														
7. 7	Гемпер	атура окрух	каю	щей	cpe	ды	возле ме	ста отбој	ра п	роб,	$t_{\rm oc}$	=		°C	1.
Пр	имечан	ия:													
Из	мерени	я выполнил	ІИ												
	(подписи, ФИО)														